

Democritus University of Thrace, Kavala, Greece

School of Science Department of Informatics

Department of European and International Programmes - Erasmus+

Agios Loukas, 654 04, Kavala University Campus, Greece 0030-2510-462221 & -290 & -308

Proposed Course for incoming Erasmus students¹

Responsible for the course	Professor George A. Papakostas		
(lecturer)	0030 2510 462 321		
(name, phone number, e-	gpapak@cs.duth.gr		
mail address)			
Title of the Course	INTRODUCTION TO COMPUTER VISION		
ECTS credits	5		
Short contents of the course	Basic concepts of human vision function.		
	Sensors and imaging.		
	Basic concepts of computer vision.		
	4. Computer vision in 2 and 3 dimensions (2-D and 3-D).		
	5. Stereoscopic vision.		
	6. Object detection.		
	7. Motion analysis.		
	8. Scene understanding.		
	Distributed camera networks.		
	10. Analysis and use of image depth.		
	11. Image segmentation.		
	12. Feature detection and identification (SIFT, SURF, etc).		
	13. Visual analysis of people (face recognition, expressions, etc.).		
	14. Feature extraction.		
	15. Applications of computer vision.		
	16. Familiarity with OpenCV library.		
Aim of the course and target	The course aims to familiarize students with the basic principles of		
audience	computer vision as well both theoretically and practically. The		
	primary objective of the course is the promotion the importance of		
	the research topic of computer vision and the role it has in the		
	modern world. This goal is pursued through parallelism with the		
	abilities of human vision. Within this course, several processing		
	stages are presented that are required to achieve the vision		
	function of a system computer - camera. It is very important to		
	emphasize that the main objective of the course is the analysis and implementation of algorithms that support a typical artificial		
	vision system.		
	 Target audience: Undergraduate students of Informatics/ 		
	Computer Science		
Teaching Methods duration	Lectures: 52 hours		
and Evaluation	Hands-on exercises: 26 hours		
and Evaluation	Project: 26 hours		
	Evaluation:		
	100% Individual AND/OR Group Assignments		
Offered Period	Fall semester		
	<u> </u>		

Courses offered in English for incoming Erasmus+ students

Indicative bibliography	1.	R. Szeliski, "Computer Vision: Algorithms and Applications", 1st
		Edition, Springer, 2011.
	2.	D. Forsyth and J. Ponce, "Computer Vision: A Modern Approach", 2nd
		Edition, Prentice Hall, 2011.
	3.	G. Bradski and A. Kaehler, "Learning OpenCV: Computer Vision with
		the OpenCV Library", 1st Edition, O'Reilly Media, 2008.

¹ Could be easily used and offered for TS movement to our Erasmus partners