COURSE OUTLINE

1. GENERAL				
SCHOOL	School of Sciences			
DEPARTMENT	Department of Computer Science			
LEVEL OF STUDIES	Undergraduate			
COURSE CODE	615SKOC	5SKOC SEMESTER 6 th		
COURSE TITLE	Introduction to Robotics			
TEACHING ACTIVITIES If the ECTS Credits are distributed in distinct parts of the course e.g. lectures, labs etc. If the ECTS Credits are awarded to the whole course, then please indicate the teaching hours per week and the corresponding ECTS Credits.			TEACHING HOURS PER WEEK	
	Lectures 2		5	
	Tutorial Exercices		1	
Please, add lines if necessary. Teaching methods and organization of the course are described in section 4.		nization of		
COURSE TYPE Background, General Knowledge, Scientific Area, Skill Development PREREQUISITES:	Scientific Area Mathematics II			
TEACHING & EXAMINATION LANGUAGE:	Greek			
COURSE OFFERED TO ERASMUS STUDENTS:	No			
COURSE URL:	http://195.130.93.18/pachidis/HomePage/cur_courses_en.htm			

2. LEARNING OUTCOMES

Learning Outcomes

Please describe the learning outcomes of the course: Knowledge, skills and abilities acquired after the successful completion of the course.

The purpose of the course is to introduce the student to the scientific area of robotics by presenting its historical evolution by studying mature technologies and describing modern trends in a wide range of practical applications. Specifically, the lesson aims to help the students comprehend basic robotic operators. The purpose of the lesson is to help students understand the mathematical model of two degrees of freedom robotic manipulators. It also refers to introductory concepts of the three-degree-of-freedom robotic manipulator mathematical model.

The course material aims to describe: direct & inverse kinematic analysis, its kinematic velocity and acceleration, static analysis and dynamic analysis. Particular emphasis is placed on the study of singularity points as well as the applications of homogeneous transformation matrices.

The course material also aims to introduce students to the computational requirements of the algorithms used and their programming.

Reference is made to sensors, the processing of information from sensors, control technologies, and various forms of human-machine communication.

Upon successful completion of the course, the student will be able to:

- Understand the basic components of robotic systems and their interconnection.
- Know the direct and inverse kinematic analysis of two- and three-degree of freedom robots.
- Describe basic equations of velocity/acceleration kinematics, static and dynamic analysis of robotic manipulators.
- Can describe translations/rotations with homogeneous transformation matrices.
- Appreciate the value of using electronic sensors in robots and computers.
- Analyze basic computational models of human-machines interaction.
- Collaborate with his colleagues to create and present an elementary system for humanmachines interaction.

General Skills Name the desirable general skills upon successful completion of the module				
Search, analysis and synthesis of data and information, ICT Use Adaptation to new situations Decision making Autonomous work Teamwork Working in an international environment Working in an interdisciplinary environment Production of new research ideas	Project design and management Equity and Inclusion Respect for the natural environment Sustainability Demonstration of social, professional and moral responsibility and sensitivity to gender issues Critical thinking Promoting free, creative and inductive reasoning			
 Adaptation to new situations Decision making Autonomous work Teamwork Production of new research ideas 				

3. COURSE CONTENT

- 1. Robot and robotics applications classification. Components of robotic systems. Robotic areas analysis.
- 2. Two degrees of freedom robotic manipulator: direct/inverse kinematic analysis, singularity points, velocity/acceleration kinematics.
- 3. Balance equations of force/moments. Dynamic analysis. Energy calculation. Three degrees of freedom robotic manipulator.
- 4. Robot kinematic description. Coordinate Systems and symbols
- 5. Homogeneous transformation matrices. translations/rotations. Mounting a gripper. Description of rotation. Denavit-Hartenberg algorithm.
- 6. Technological evolution of the need for human-machines interaction
- 7. The "human factor": sensors, actuators, the brain and its functions, the spoken language
- 8. Study of Interaction elements such as control layouts, transfer functions, spatial correlations, function models, senses, interaction errors
- 9. Modeling of interaction mainly with descriptive and predictive models

4. LEARNING & TEACHING METHODS - EVALUATION

TEACHING METHOD Face to face, Distance learning, etc.	Face to face			
USE OF INFORMATION & COMMUNICATIONS TECHNOLOGY (ICT) Use of ICT in Teaching, in Laboratory Education, in Communication with students	 Use of ICT in Teaching Electronic communication needs. Webpage 	n (e-mail) according to the		
TEACHING ORGANIZATION	Activity	Workload/semester		
The ways and methods of teaching are	Lectures	52		
described in detail. Lectures, Seminars, Laboratory Exercise, Field	Tutorial Exercices	13		
Exercise, Bibliographic research & analysis, Tutoring, Internship (Placement), Clinical	Bibliographic research & analysis (teamwork)	18		
Exercise, Art Workshop, Interactive learning, Study visits, Study / creation, project, creation,	Individual training work	20		
project. Etc.	Project	20		
	Written exams	2		
The supervised and unsupervised workload per	Course total	125		
activity is indicated here, so that total workload per semester complies to ECTS standards.				
STUDENT EVALUATION Description of the evaluation process	I. Individual work - study (30%) involving solving practical problems			
Assessment Language, Assessment Methods, Formative or Concluding, Multiple Choice Test,	li. Final written exam (70%) involving problem solving			
Short Answer Questions, Essay Development Questions, Problem Solving, Written	Fuch stick with the set of follows:			
Assignment, Essay / Report, Oral Exam,	Evaluation criteria are as follows:			
Presentation in audience, Laboratory Report,	 Problem analysis ability 			

Clinical examination of a patient, Artistic interpretation, Other/Others Please indicate all relevant information about	 Ability to design solutions Ability to implement solutions
the course assessment and how students are informed	Oral final exam (100%), for those with dyslexia

5. SUGGESTED BIBLIOGRAPHY

- Δ.Μ. Εμίρης, Δ.Ε. Κουλουριώτης, Ρομποτική, ΣΕΛΚΑ-4Μ, Αθήνα, 2004
- Α.Τ. Μικρόπουλος, Εκπαιδευτικό Λογισμικό: Θέματα Σχεδίασης και Αξιολόγησης Λογισμικού Υπερμέσων, Κλειδάριθμος, 2009
- Scott MacKenzie, Human-Computer Interaction: An Empirical Research Perspective, Morgan Kaufmann, 2013
- IEEE Robotics & Automation Magazine
- IEEE Transactions on Robotics
- IEEE Transactions on Systems, Man, and Cybernetics: Systems
- IEEE Transactions on Affective Computing
- IEEE Transactions on Autonomous Mental Development
- IEEE Transactions on Human-Machine Systems
- Computers in Human Behavior
- Interacting with Computers
- International Journal of Human-Computer Studies
- Robotics
- Robotics and Autonomous Systems
- Robotics and Computer-Integrated Manufacturing